Acta Crystallographica Section E

Structure Reports
 Online

5-[(Cyclohexylamino)methylene]-2,2-dimethyl-1,3-dioxane-4,6-dione

ISSN 1600-5368

Ivo Vencato, ${ }^{\text {a* }}$ Silvio Cunha, ${ }^{\text {b }}$ Jailton Ferrari, ${ }^{\text {b }}$ Carlito Lariucci ${ }^{\text {c }}$ and Leandro C. Xavier ${ }^{\text {c }}$

${ }^{\text {a }}$ Ciências Exatas e Tecnológicas - UEG, BR 153, Km 98, 75133-050 Anápolis, GO, Brazil,
${ }^{\text {b }}$ Instituto de Química - UFBA, Campus de Ondina, 40170-290 Salvador, BA, Brazil, and ${ }^{\text {c Instituto de Física - UFG, 74001-970 Goiânia, }}$ GO, Brazil

Correspondence e-mail: vencato@if.ufg.br

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.057$
$w R$ factor $=0.204$
Data-to-parameter ratio $=7.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the title enaminone, $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{O}_{4}$, the Meldrum's acid group has a distorted boat conformation. The two independent molecules of the asymmetric unit are dimerized about a pseudo inversion center through two intermolecular N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with $\mathrm{N} \cdots \mathrm{O}$ distances of 3.049 (4) and 3.093 (4) A. The dimers are stacked along the [010] direction.

Comment

The synthesis of functionalized enaminones is a theme of ongoing interest owing to their potential in the synthesis of heterocyclic compounds (Negri et al., 2004; Lue \& Greenhill, 1997; Kuckländer, 1994; Ferraz \& Pereira, 2004). A particular class of such compounds is derived from Meldrum's acid and the solid-state structural study of such derivatives has been described (Vencato et al., 2004; Cunha et al., 2003; Silva et al., 2006; Silva et al., 2005a,b, Joussef et al., 2005a,b). Here we report our structural study of one enaminone, (I), derived from Meldrum's acid.

(I)

The structure has two independent molecules in the asymmetric unit (Fig. 1). Selected bond distances, angles and torsion angles are given in Table 1. In both molecules, the Meldrum's acid group has a distorted boat conformation, indicated by the Cremer \& Pople (1975) parameters: $\mathrm{O} 5 A \rightarrow \mathrm{C} 4 A \rightarrow \cdots \rightarrow \mathrm{C} 6 A\left[Q=0.429\right.$ (4) $\AA, \theta=61.6$ (5) ${ }^{\circ}$ and φ $=297.7$ (6) $\left.)^{\circ}\right]$ and $\mathrm{O} 5 B \rightarrow \mathrm{C} 4 B \rightarrow \cdots \rightarrow \mathrm{C} 6 B[Q=0.436$ (4) \AA, θ $=63.3(5)^{\circ}$ and $\left.\varphi=298.4(5)^{\circ}\right]$.

There are small differences between the two molecules, as can be seen in the bond angles $\mathrm{O} 7-\mathrm{C} 6-\mathrm{C} 12$ of 106.7 (4) and $104.5(3)^{\circ}$ for molecules A and B, respectively. The bond distance $\mathrm{O} 10 A-\mathrm{C} 8 A$ of 1.219 (4) \AA is marginally longer than the corresponding $\mathrm{O} 10 B-\mathrm{C} 8 B$ distance of 1.204 (4) \AA, presumably due to the fact that atom $\mathrm{O} 10 A$ is involved in a hydrogen bond as acceptor.

There are two intramolecular hydrogen bonds (Table 2), providing two flattened $\mathrm{H} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{O} 10$ rings for molecules A and B. The two independent molecules of the asymmetric unit are dimerized about a pseudo-inversion center through two intermolecular hydrogen bonds (Table 2). It is worth noting that atoms $\mathrm{H} 1 A$ and $\mathrm{H} 1 B$ belong to bifur-

Received 5 June 2006 Accepted 10 July 2006

The asymmetric unit of (I), with the atom-numbering schemes for molecules A and B. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds.

Figure 2
Hydrogen bonding of (I). Intra- and intermolecular hydrogen bonds are shown as dashed lines. Only the H atoms involved in hydrogen bonds are shown.
cated intra- and intermolecular hydrogen bonds. The hydrogen bonding is shown in Fig. 2. The molecular packing of (I) is shown in Fig. 3, with the geometrical parameters in Table 2. The non-classical intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen

Figure 3
Partial packing diagram of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.
bond completes the packing, with the dimers stacked parallel to the [010] direction.

Experimental

A solution of 288 mg (2.0 mmol) of Meldrum's acid in 2 ml (26.1 mmol) of trimethyl orthoformate was heated at reflux for 3 h after which time the solvent was evaporated. The yellow solid that formed was added to 2.0 mmol of cyclohexylamine in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was allowed to stand at room temperature with stirring for 72 h . The solvent was evaporated and the crude residue was purified by silica gel 60 ($70-230 \mathrm{mesh}$) column chromatography (hexane/ethyl acetate 50%), afforded (I) as a yellow solid (yield $116.7 \mathrm{mg}, 23 \%$; m.p. $421-422 \mathrm{~K}$). Single crystals were obtained by slow evaporation of a solution of (I) in $\mathrm{CH}_{3} \mathrm{Cl}$ at room temperature.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4}$
$M_{r}=253.29$
Orthorhombic, ${ }^{\circ} \mathrm{Pca} 2_{1}$
$a=20.905$ (2) Å
$b=10.222$ (1) \AA
$c=12.516$ (6) \AA
$V=2674.6(13) \AA^{3}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: none 2698 measured reflections 2558 independent reflections

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.258 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \text { radiation } \\
& \mu=0.77 \mathrm{~mm}^{-1} \\
& T=297(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.35 \times 0.35 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

2404 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=68.0^{\circ}$
2 standard reflections frequency: 120 min intensity decay: 1%

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057
$$

$w R\left(F^{2}\right)=0.204$
$S=1.20$
2558 reflections
332 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1659 P)^{2}\right. \\
& +0.0648 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.005 \\
& \Delta \rho_{\text {max }}=0.39 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.40 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.054 \text { (4) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1 A-\mathrm{C} 2 A$	$1.294(4)$	$\mathrm{N} 1 B-\mathrm{C} 2 B$	$1.287(5)$
$\mathrm{N} 1 A-\mathrm{C} 13 A$	$1.469(4)$	$\mathrm{N} 1 B-\mathrm{C} 13 B$	$1.472(4)$
$\mathrm{C} 4 A-\mathrm{O} 9 A$	$1.208(5)$	$\mathrm{C} 4 B-\mathrm{O} 9 B$	$1.213(4)$
$\mathrm{C} 4 A-\mathrm{O} 5 A$	$1.373(5)$	$\mathrm{C} 4 B-\mathrm{O} 5 B$	$1.368(5)$
$\mathrm{O} 5 A-\mathrm{C} 6 A$	$1.441(5)$	$\mathrm{O} 5 B-\mathrm{C} 6 B$	$1.429(5)$
$\mathrm{C} 6 A-\mathrm{O} 7 A$	$1.435(4)$	$\mathrm{C} 6 B-\mathrm{O} 7 B$	$1.441(5)$
$\mathrm{O} 7 A-\mathrm{C} 8 A$	$1.364(4)$	$\mathrm{O} 7 B-\mathrm{C} 8 B$	$1.373(4)$
$\mathrm{C} 8 A-\mathrm{O} 10 A$	$1.219(4)$	$\mathrm{C} 8 B-\mathrm{O} 10 B$	$1.204(4)$
$\mathrm{C} 2 A-\mathrm{N} 1 A-\mathrm{C} 13 A$	$123.1(3)$	$\mathrm{C} 2 B-\mathrm{N} 1 B-\mathrm{C} 13 B$	$122.8(3)$
$\mathrm{O} 7 A-\mathrm{C} 6 A-\mathrm{C} 12 A$	$106.7(4)$	$\mathrm{O} 7 B-\mathrm{C} 6 B-\mathrm{C} 12 B$	$104.5(4)$
$\mathrm{C} 18 A-\mathrm{C} 13 A-\mathrm{C} 14 A$	$111.1(3)$	$\mathrm{C} 18 B-\mathrm{C} 13 B-\mathrm{C} 14 B$	$111.8(3)$
$\mathrm{C} 15 A-\mathrm{C} 16 A-\mathrm{C} 17 A$	$112.7(4)$	$\mathrm{C} 15 B-\mathrm{C} 16 B-\mathrm{C} 17 B$	$111.4(4)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 10 A$	$0.80(5)$	$2.27(5)$	$2.791(4)$	$124(4)$
$\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 10 B$	$0.77(5)$	$2.27(5)$	$2.796(4)$	$126(4)$
$\mathrm{N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 10 B^{\mathrm{i}}$	$0.80(5)$	$2.31(5)$	$3.049(4)$	$154(4)$
$\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 10 A^{\text {ii }}$	$0.77(5)$	$2.38(5)$	$3.093(4)$	$154(4)$
$\mathrm{C} 15 B-\mathrm{H} 15 D \cdots \mathrm{O} 10 A^{\mathrm{iii}}$	0.97	2.58	$3.536(6)$	170

Symmetry codes: (i) $x, y+1, z$; (ii) $x, y-1, z$; (iii) $-x+\frac{1}{2}, y-1, z+\frac{1}{2}$.
H atoms bonded to atoms $\mathrm{N} 1 A$ and $\mathrm{N} 1 B$ were found in a difference map and their positions were refined freely, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{N})$. All other H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.96$ and $0.97 \AA$) and treated as riding atoms $\left[U_{\text {iso }}(\mathrm{H})=1.2\right.$ $U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}($ methyl C $\left.)\right]$. Due to the absence of any significant anomalous scatterers in the compound, Friedel pairs were merged.

Data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: $C A D-4-P C$; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXL97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors gratefully acknowledge the financial support of Conselho Nacional de Desenvolvimento Científico e Tecno-lógico-CNPq (Edital Universal-2002, Processo 474592/03-0), Fundação de Amparo à Pesquisa do Estado da Bahia FAPESB (Edital Fluxo Contínuo-2004, Processo 1431040046342 and Edital PRODOC-2004 Processo 1331040048671) and Fundação de Apoio à PesquisaFUNAPE/UFG. We also thank CAPES for a fellowship to JF, and CNPq for research fellowships to IV and SC.

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Cunha, S., da Silva, V. C., Napolitano, H. B., Lariucci, C. \& Vencato, I. (2003). J. Braz. Chem. Soc. 14, 107-112.

Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ferraz, H. M. C. \& Pereira, F. L. C. (2004). Quim. Nova, 27, 89-95.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Joussef, A. C., da Silva, L. E., Bortoluzzi, A. J. \& Foro, S. (2005a). Acta Cryst. E61, o2642-o2643.
Joussef, A. C., da Silva, L. E., Bortoluzzi, A. J. \& Foro, S. (2005b). Acta Cryst. E61, o2873-o2874.
Kuckländer, V. (1994). The Chemistry of Enamines, Part 1, edited by Z. Rappoport, pp. 525-639. New York: John Wiley \& Sons.
Lue, P. \& Greenhill, J. V. (1997). Advances in Heterocyclic Chemistry, Vol. 67, edited by A. R. Katritzky, pp. 207-243. New York: Academic Press.
Negri, G., Kascheres, C. \& Kascheres, A. J. (2004). J. Heterocycl. Chem. 41, 461-491.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Silva, L. E. da, Joussef, A. C., Andrighetti-Fröhner, C. R., Nunes, R. J. \& Bortoluzzi, A. J. (2006). Acta Cryst. E62, o1062-o1063.
Silva, L. E. da, Joussef, A. C., Nunes, R. J., Andrighetti-Fröhner, C. R. \& Bortoluzzi, A. J. (2005a). Acta Cryst. E61, o4121-o4122.
Silva, L. E. da, Joussef, A. C., Nunes, R. J., Andrighetti-Fröhner, C. R. \& Bortoluzzi, A. J. (2005b). Acta Cryst. E61, o4252-o4253.
Vencato, I., Cunha, S., Ferrari, J., Napolitano, H. B. \& Lariucci, C. (2004). Acta Cryst. E60, o2479-o2481.

[^0]: © 2006 International Union of Crystallography All rights reserved

